

CONTINUOUS DISTILLATION

Non contractual photo

SERVICE: 230 V / 50 HZ / SINGLE PHASE: 4 KW. COLD WATER 20 ° C / 3 BAR: 1 M3 / H.

SEWER.

DIMENSIONS: 1,55 M X 0,65 M X 3,05 M

WEIGHT: 180KG

REFERENCE: MP1010

Principle of operation:

Distillation allows the separation of a mixture of compounds having different boiling points. The boiling of the mixture makes it possible to obtain vapors of compositions different from the liquid. Recondensations and multiple re-evaporations progressively enrich the vapor phase to the most volatile product. The vapors are condensed and then distributed between the distillate and the reflux via a column head valve.

Educational Objectives:

Educational goals:

- Study of the hydrodynamics of the column.
- Influence of the operating conditions on the separation of a binary solution
- Thermal balances.
- Material balance.
- Determination of the number of theoretical plates (McCabe and Thiele, Ponchon and Savart).
- Determination of the number of transfer units

Technical specifications:

- Storage can of the polyethylene feed solution.
- · Feeder dosing pump.
- Preheater with two valves for supply at 33% or 66% of the column,
- Continuous boiler in borosilicate glass, electric heating, equipped with minimum safety level and maximum temperature safety.
- Refrigerant for differential pressure test.
- · Column in borosilicate glass, in three elements with lining.
- Three stainless steel 316L recentering trays, each equipped with sampling and temperature sampling valve.
- Borosilicate glass column head, with temperature measurement, equipped with a timer valve to control the reflux ratio.
- Vertical 316L stainless steel condenser, borosilicate glass ferrule.
- Two refrigerants of distillate and residue in 316L stainless steel.
- Recipe for borosilicate glass distillate.
- Recipe of the borosilicate glass residue, equipped with a 316L stainless steel drain valve.
- Two containers for receiving the distillate and the polyethylene residue
- 316L stainless steel connection pipes.
- Support frame in 304L stainless steel tubes and aluminum nuts.

Instrumentation:

- Condenser cooling water supply equipped with a float flowmeter with its control valve and a water circulation controller to stop heating due to lack of cooling.
- Column pressure drop measurement using a "U" differential pressure

 gauge. Control and control cabinet, IP55, equipped with emergency stop, operating buttons and the following interfaces: Preheater temperature controller. Electronic timer controlling the valve of the column head. Boiler heating control regulator. Two digital temperature indicators of 12 probes type Pt100 ?.
OPTIONS:
Touch screen to view temperatures and control the regulators. With data storage and data recovery on USB stick in .txt files.